12.1 Exponential Functions

Definition of the Exponential Function

The exponential function f with base b is defined by

$$
f(x)=b^{x} \text { or } y=b^{x}
$$

where b is a positive constant other than 1 and x is any real number.
Example 1: The exponential function $f(x)=13.49(0.967)^{x}-1$ describes the number of 0 -rings expected to fail, $f(x)$, when the temperature is $x^{\circ} F$. On the morning the Challenger was launched, the temperature was $31^{\circ} \mathrm{F}$, colder than any previous experience. Find the number of 0 -rings expected to fail at this temperature.
$f(3) \times 4.7668-1$

$$
f(31) \approx 3,7668
$$

$$
f(31)=4
$$

We would expect about 40 -rings

Graphing Exponential Functions

Characteristics of Exponential Functions of the Form $f(x)=b^{x}$

1. The domain of $f(x)=b^{x}$ consists of all real numbers. The range consists of all positive real numbers.
2. The graphs of all exponential functions of the form $f(x)=b^{x}$ pass through the point $(0,1)$ because $f(0)=b^{0}=1$. The y-intercept is $(0,1)$.
3. The graph of $f(x)=b^{x}$ may be either strictly increasing or strictly decreasing:

- If $b>1, f(x)=b^{x}$ has a graph that goes up to the right and is an increasing function. The greater the value of b, the steeper the increase.
- If $b<1, f(x)=b^{x}$ has a graph that goes down to the right and is a decreasing function. The smaller the value of b, the steeper the decrease.

4. The graph of $f(x)=b^{x}$ approaches, but does not cross, the x-axis. The x-axis, or $y=0$, is a horizontal asymptote.

Example 2: Graph $f(x)=3^{x}$

1. The domain is all real numbers. The range is all positive real numbers.
2. The y-intercept is $(0,1)$.
3. Since $b>1$, the graph is increasing.
4. $y=0$ is a horizontal asymptote

Table of Coordinates

x	$f(x)$	$(x, f(x))$
-2	$f(-2)=3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$	$\left(-2, \frac{1}{9}\right)$
-1	$f(-1)=3^{-1}=? \frac{1}{3}$	$\left(-1, \frac{1}{3}\right)$
0	$f(0)=3^{0}=? 1$	$(0,1)$
1	$f(1)=? 3=3$	$(1,3)$
2	$f(2)=3^{2}=9$	$(2,9)$

$$
f(x)=3^{x}
$$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 3: Graph $\mathrm{f}(\mathrm{x})=\left(\frac{1}{3}\right)^{\mathrm{x}}$

1. The domain is all real numbers. The range is all positive real numbers.
2. The y-intercept is $(0,1)$.
3. Since $b<1$, the graph is decreasing.
4. $y=0$ is a horizontal asymptote

Table of Coordinates

x	$f(x)$	$(x, f(x))$
-2	$f(-2)=\left(\frac{1}{3}\right)^{-2}=\frac{1}{3^{-2}}=9$	$(-2,9)$
-1	$f(-1)=\left(\frac{1}{3}\right)^{-1}=\frac{1}{3^{-1}}=?$	$(-1,3)$
0	$f(0)=\left(\frac{1}{3}\right)^{0}=? 1$	$(0,1)$
1	$f(1)=?\left(\frac{1}{3}\right)^{\frac{1}{-}-\frac{1}{3}}$	$\left(1, \frac{1}{3}\right)$
2	$f(2)=\left(\frac{1}{3}\right)^{2}=\frac{1}{9}$	$\left(2, \frac{1}{9}\right)$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 4: Sketch the graph of $f(x)=2^{x}$ and $g(x)=2^{x+1}$ on the same coordinate axes. What is the relationship between the two graphs?

x	$f(x)=y$	$(x, f(x))$
-2	$f(-2)=2^{(-2)}=\frac{1}{2^{2}}=\frac{1}{4}$	$\left(-2, \frac{1}{4}\right)$
-1	$f(-1)=2^{(-1)}=\frac{1}{2}=\frac{1}{2}$	$\left(-1, \frac{1}{2}\right)$
0	$f(0)=2^{(0)}=1$	$(0,1)$
1	$f(1)=2^{(1)}=2$	$(1,2)$
2	$f(2)=2^{(2)}=4$	$(2,4)$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 5: Sketch the graph of $f(x)=2^{x}$ and $g(x)=2^{x}-3$ on the same coordinate axes. What is the relationship between the two graphs?

x	$f(x)=y$	$(x, f(x)$
-2	$f(-2)=\frac{1}{4}$	$\left(-2, \frac{1}{4}\right)$
-1	$f(-1)=\frac{1}{2}$	$\left(-1, \frac{1}{2}\right)$
0	$f(0)=1$	$(0,1)$
1	$f(1)=2$	$(1,2)$
2	$f(2)=4$	$(2,4)$

\mathbb{X}	$g(x)=y$	$(x, g(x)$
-2	$g(-2)=2^{(-2)}-3=\frac{1}{4}-3=-2.75$	$(-2,-2,5)$
-1	$g(-1)=2^{(-1)}-3=\frac{1}{2}-3=-2.5$	$(-1,-2.5)$
0	$g(0)=2^{(0)}-3=1-3=-2$	$(0,-2)$
1	$g(1)=2^{(1)}-3=2-3=-1$	$(1,-1)$
2	$g(2)=2^{(2)}-3=4-3=1$	$(2,1)$

Aryme Note Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

In general, the graph of $g(x)=b^{x}+d$ is simply the graph of $f(x)=b^{x}$ shifted d units up, if $d>0$, or d units down, if $d<0$. The horizontal asymptote of $g(x)=b^{x}+d$ is $y=d$.
The graph of $g(x)=b^{x+c}$ is simply the graph of $f(x)=b^{x}$ shifted c units left, if $c>0$, or c units right, if $\mathrm{c}<0$. The horizontal asymptote of $g(x)=b^{x+c}$ is $y=0$.
Example 6: For each of the following pairs of functions, tell how the graph of the second function can be obtained from the graph of the first function. Give the equation of the horizontal asymptote.
a. $\mathrm{f}(\mathrm{x})=4^{x}, \mathrm{~g}(\mathrm{x})=4^{x+c}, \mathrm{c}=-3$, Shift $f(x)$ 3 units

Horizontal| Asymptote is $y=0 \quad$ $\quad x+c_{2} \quad$ "Horizontal" $\quad(x)=4^{x-3}$.
b. $\mathrm{f}(\mathrm{x})=4^{x}, \mathrm{~g}(\mathrm{x})=4^{x+3} ; \mathrm{c}, \mathrm{c}=3$, "Horizantd" $\begin{aligned} & \text { shift } f(x) 3 \text { u } \\ & \text { To the left t/ } \\ & \mathrm{To} \\ & \mathrm{g}(x)=4^{x+3}\end{aligned}$

$$
\text { c. } \mathrm{f}(\mathrm{x})=4^{x}, \mathrm{~g}(\mathrm{x})=4^{b^{x}+2^{2}}, \mathrm{~d}, \mathrm{~d}=2 \text {, "vertical" } \begin{gathered}
\text { Shift } f(x) 2 \text { units } \\
\text { upwind to moke }
\end{gathered}
$$

Hovizoundd Asymptote is $y=2$
upward to make

$$
g(x)=4^{x}+2
$$

d. $\mathrm{f}(\mathrm{x})=4^{x}, \mathrm{~g}(\mathrm{x})=4^{x}-3^{D}, d=-3$, Shift $f(x) 3$ units $\begin{array}{ll}\text { Horizanld Asymptote is } y=-3 & g(x)=4^{x}-3\end{array}$

$$
\text { e. } \begin{aligned}
\mathrm{f}(\mathrm{x})=4^{x}, \mathrm{~g}(\mathrm{x}) & =4^{x+1}-2 ; c=1 \mathrm{l} d=-2 \\
& =b^{x+c}+6
\end{aligned}
$$

Hovizantel Asymptote is $y=-2$

> "tbrizatd"- shift $f(x)$ l unit to the left "vertical" - Shift $f(x)$ 2 units downward combined, these two shifts will
> male $g(x)=4^{x+1}-2$

$$
e \approx 2,71828182846
$$

The Natural Base e
An irrational number, symbolized by the letter e, appears as a base in many applied exponential functions. This irrational number is approximately equal to 2.72 . The number e is called the natural base, and the function $f(x)=e^{x}$ is called the natural exponential function.

Example 7: The function $f(x)=6 e^{0.013 x}$ describes world population, $f(x)$, in billions, x years after 2000 subject to a growth rate of 1.3% annually. Use the function to find the world population in 2050.

$$
\begin{aligned}
& x=\text { years after } 2000 \\
& x=50 \text { in } 2,050 \\
& \text { Find } f(50) \text { i } \\
& \hline f(50)=6 e \\
& f(50)=6 e^{0.013(50)} \\
& f(50) \approx 6 \cdot(1.91554 \ldots) \\
& f(50) \approx 11 . \frac{49}{5} 324 \\
& f(50) \approx 11.5
\end{aligned}
$$

In 2,050, the world's papuldition should be about 11.5 billion.

Compound Interest

Formulas for Compound Interest After t years, the balance, A, in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas:

1. For n compoundings per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
2. For continuous compounding: $\mathrm{A}=\mathrm{Pe}^{\mathrm{tt}}$

Example 8: Find the accumulated value of an investment of $\$ 5000$ for 10 years at an interest rate of 6.5% if the money is
$p=5,000$
$t=10$ yedr 5
$r=6.5 \%$
$r=0.065$
a. compounded semiannually \longleftarrow semiannually means $n=2$

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=(95000)\left(1+\frac{0.065)}{2}\right)^{[(2) \cdot(00)]} \\
& A=\$ 5,000(1+0.0325)^{20} \\
& A=\$ 5,000(1.0325)^{20} \\
& A \approx \$ 5,000(1.895838) \\
& A \approx 99,479.19
\end{aligned}
$$

b. compounded monthly $\leqslant n=12$
$A=P\left(1+\frac{r}{n}\right)^{n}$
$A=(5,000)\left(1^{n}+\frac{(0,065)}{12}\right)^{[(12)(10]}$
$A \approx 95,000 \cdot(1+0.005416666 \ldots)^{120}$
$A \approx \$ 5,000 \cdot(1.00541667)^{120}$
$A \approx \$ 5,000 \cdot(1,91218451 \ldots)$
$A \approx \$ 5,000 .(1.9121845)$
A $\approx 9.560 .92$
c. compounded continuously.

$$
\begin{aligned}
& A=P e^{r t} \\
& A=(0.065)(10) \\
& A=\$ 5,000) e^{0.65} \\
& A \approx 75,000 \cdot(1.91554082901 \ldots) \\
& A \approx \$ 5,000 \cdot(1.9155408) \\
& A \approx \$, 577.704 \\
& A \approx \$ 9,577.70 .
\end{aligned}
$$

Answers Section 12.1

Example 1: $f(31) \cong 3.77$. We would expect about 4 O-rings to fail.
Example 2: The domain is all real numbers. The range is all positive real numbers. The y-intercept is $(0,1)$. Since $b>1$, the graph is increasing. $y=0$ is a horizontal asymptote

Example 3: The domain is all real numbers. The range is all positive real numbers. The y-intercept is $(0,1)$. Since $b<1$, the graph is decreasing. $y=0$ is a horizontal asymptote

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Example 4: Note that the graph of $y=2^{x}$ (in purple) has been shifted one unit to the left to obtain the graph of $y=2^{x+1}$ (in red)

Example 5: Note that the graph of $y=2^{x}$ (in purple) has been shifted three units to the down to obtain the graph of $y=2^{x}-3$ (in red)

Example 6:

a. $c=-3$, shift 3 units right. Equation of horizontal asymptote: $y=0$.
b. $c=3$, shift 3 units left. Equation of horizontal asymptote: $y=0$.
c. $d=2$, shift 2 units up. Equation of horizontal asymptote: $y=2$.
d. $d=-3$, shift 3 units down. Equation of horizontal asymptote:
$y=-3$.

[^0]e. $c=1$ and $d=-2$, shift 1 unit left and 2 units down. Equation of horizontal asymptote: $y=-2$.
Example 7: $f(50) \cong 11.49$. The world population in 2050 is projected to be about 11.5 billion.

Example 8:

a. $\$ 9,479.19$
b. $\$ 9,560.92$
c. $\$ 9,577.70$

12.2 Logarithmic Functions

The Definition of Logarithmic Functions

For $x>0$ and $b>0, b \neq 1$

$$
y=\log _{b} x \text { is equivalent to } b^{y}=x .
$$

The function $f(x)=\log _{b} x$ is the logarithmic function with base b.
Example 1: Write each equation in its equivalent exponential form.
a. $4=\log _{2} \mathrm{x} ; \quad 2^{4}=x$
b. $-1=\log _{3} x ; \quad 3^{-1}=x$
c. $\log _{2} 8=y \quad ; \quad 2^{y}=8$

Example 2: Write each equation in its equivalent logarithmic form.
a. $2^{6}=x$

$$
\log _{2}(x)=6
$$

b. $b^{4}=81 ; \quad \log _{b}(81)=4$
c. $2^{y}=128$
$\log _{2}(128)=y$

Example 3: Evaluate each of the following.
a. $\log _{10} 100$; let $y=\log _{10}(100), \quad 10^{y}=100$

$$
\begin{aligned}
10^{y} & =10^{2} \\
y & =2, \quad \log _{10}(100)=2
\end{aligned}
$$

b. $\log _{25} 5$; Let $y=\log _{25}(5), \begin{aligned} 25^{y} & =5 \\ \left(5^{2}\right)^{y} & =5^{1} \\ 5^{2 y} & =5^{\prime}\end{aligned} \quad$, $\begin{aligned} \frac{2 y}{2} & =\frac{1}{2} \\ 4 & =\frac{1}{2}\end{aligned}$

$$
2 y=
$$

$$
\log _{25}(5)=\frac{1}{2}
$$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.
c. $\log _{5} \frac{1}{5} ;$ let $y=\log _{5}\left(\frac{1}{5}\right)$,

$$
\begin{aligned}
& 5^{y}=\frac{1}{5} \\
& 5^{y}=5^{-1} \\
& y=-1, \log _{5}\left(\frac{1}{5}\right)=-1
\end{aligned}
$$

d. $\log _{2} \frac{1}{16}$; let $y=\log _{2}\left(\frac{1}{16}\right)$,

$$
\begin{aligned}
& 2^{y}=\frac{1}{16} \\
& 2^{y}=16^{-1} \\
& 2^{y}=\left(2^{4}\right)^{-1} \\
& 2^{y}=2^{-4} \\
& y=-4, \frac{\log _{2}\left(\frac{1}{16}\right)=-4}{\frac{50 \omega k}{16}} \begin{array}{l}
\frac{14}{\hat{y}_{2}} \hat{2} 2 \\
16=2^{4}
\end{array}
\end{aligned}
$$

Basic Logarithmic Properties

Logarithmic Properties Involving One

1. $\log _{b} b=1$ because 1 is the exponent to which b must be raised to obtain $b . \quad\left(b^{1}=b\right)$
2. $\log _{b} 1=0$ because 0 is the exponent to which b must be raised to obtain 1. $\left(b^{0}=1\right)$

>	Inverse Properties of Logarithms
$\begin{array}{cl}\text { For } b>0 \text { and } b \neq 1, & \text { The logarithm with base } b \text { of } b \text { raised to } a \\ \log _{b} b^{x}=x & \begin{array}{l}\text { power equals that power. } \\ b \text { raised to the logarithm with base } b \text { of } a \\ b^{\log _{b} x}=x\end{array} \\ & \text { number equals that number. }\end{array}$	

Example 4: Evaluate each of the following.
a. $\log _{8} 8=1$
b. $\log _{1.5} 1.5=1$
c. $\log _{8} 1=0$
d. $\log _{1.7} 1=0$
e. $\log _{8} 8^{5}=5$
f. $\log _{5} 5^{2.3}=2.3$
g. $7^{\log _{7} 8.3}=8.3$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Graphs of Logarithmic Functions

$\left[\begin{array}{c|l|l}x & g(x)=\log _{3}(x)=f^{-1}(x) & \begin{array}{l}(\text { Bind } \\ \frac{1}{9}\end{array} \\ \left.\hline \frac{g(1)}{9}\right)=\log _{3}(\sqrt{4})=-2 & \left(\begin{array}{l}4,-2)\end{array}\right. \\ \hline \frac{1}{3} & g\left(\frac{1}{3}\right)=\log _{3}\left(\frac{1}{3}\right)=-1 & \left(\frac{1}{3},-1\right) \\ \hline \frac{1}{3} & g(1)=\log _{3}(1)=0 & (1,0) \\ \hline 3 & g(3)=\log _{3}(3)=1 & (3,1) \\ \hline 9 & g(3)=\log _{3}(9)=2 & (9,2)\end{array}\right.$
The logarithmic function is the inverse of the exponential function with the same base. Thus the logarithmic function reverses the coordinates of the exponential function. The graph of the logarithmic function is the reflection of the exponential function about the line $\mathrm{y}=\mathrm{x}$.

Characteristics of the Graphs of Logarithmic Functions of the Form $f(x)=\log _{b} x$.

1. The x-intercept is 1 . There is no y-intercept.
2. The y-axis is a vertical asymptote.
3. If $b>1$, the function is increasing. If $0<b<1$, the function is decreasing.
4. The graph is smooth and continuous. It has no sharp corners or gaps.

Example 5: Graph $f(x)=3^{x}$ and $g(x)=\log _{3} x$ on the same coordinate system.

Asyut,$x=0 \quad f(x)=3^{x}$
Live of reflection

$$
y=x
$$

$(9,2)$

$$
g(x)=\log _{3}(x)
$$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

The Domain of a Logarithmic Function

In the expression $\mathrm{y}=\log _{\mathrm{b}} \mathrm{x}, \mathrm{x}$ is the number produced when y is used as an exponent with base $b, b>0$. Since b is always positive, x must also be positive. Thus the domain of the logarithmic function is $x>0$, or all positive real numbers.
In general:
domain of $f(x)=\log _{b}(x+c)$ consists of all x for which $x+c>0$.
Example 7: Find the domain of the logarithmic function.
$f(x)=\log _{5}(x-7) \quad$ Solve: $\quad x-7>0$
$x-7+7>7+0$
$x>7$
Domain of $f(x)=\{x \mid x>7\}$
$=(7, \infty)$

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Common Logarithms

The logarithmic function with base 10 is called the common logarithmic function.
The function $f(x)=\log _{10} x$ is usually expressed simply as $f(x)=\log x$.
Most calculators have a "log" key that can be used to perform calculations with base-10 logarithms.
Logarithmic functions may be used to model some growth functions that start with rapid growth and then level off.

Example 8: The percentage of adult height attained by a girl who is x years old can be modeled by

$$
f(x)=62+35 \log (x-4)
$$

where x represents the girl's age (from 5 to 15) and $f(x)$ represents the percentage of adult height. What percentage of adult height has a 10-year old girl attained?

$$
\begin{aligned}
& \text { For a } 10 \text {-year old girl, } x=10 \\
& \text { Find } f(10) \text { : } \\
& f(10)=62+35 \log [(10)-4] \\
& f(10)=62+35 \log (6) \\
& f(10) \approx 62+35 \cdot[0.778 \ldots .] \\
& f(10) \approx 62+27.23 \\
& f(10) \approx 89.23
\end{aligned}
$$

A 10-yeardd girl has athained about 89% of
her adult hight.

Natural Logarithms

The logarithmic function with base e is called the natural logarithmic function.
The function $f(x)=\log _{e} x$ is usually expressed simply as $f(x)=\ln x$.
Most calculators have an "In" key that can be used to perform calculations with base-e logarithms.
Example 9: Find the domain of the function.

$$
\begin{aligned}
& \text { a. } \begin{aligned}
& f(x)=\ln (x+3) \quad \text { Solve: } x+3>0 \\
&-3+x+3>-3+0 \\
& x>-3
\end{aligned} \\
& \begin{aligned}
\text { The Dom in of } f(x)= & \{x \mid x>-3\} \\
= & (-3, \infty)
\end{aligned}
\end{aligned}
$$

Example 10: Simplify each expression.
a. $\ln e=1$
b. $\ln e^{4}=4$
c. $\mathrm{e}^{\ln 7}=7$
d. $\ln e^{1.5 x}=15 x$
e. $e^{\ln 3 x}=3 x$

Summary of Properties of Logarithms

Answers Section 12.2

Example 1:

Example 2:

a. $x=2^{4}$
a. $\log _{2} x=6$
b. $x=3^{-1}$
b. $\log _{b} 81=4$
c. $2^{y}=8$
c. $\log _{2} 128=y$

Example 3:

a. $\log _{10} 100=2$
b. $\log _{25} 5=\frac{1}{2}$

Example 4:

a. 1
c. $\log _{5} \frac{1}{5}=-1$
b. 1
c. 0
d. 0
d. $\log _{2} \frac{1}{16}=-4$
e. 5
f. 2.3
g. 8.3

Example 5:

Example 6:

Example 8: $f(10) \cong 89.23$ A 10 -yr old girl has attained about 89% of adult height.

Example 9: $\{x \mid x>-3\}$, or $(-3, \infty)$

Example 10:

a. 1
b. 4
c. 7
d. 1.5 x
e. $3 x$

12.3 Properties of Logarithms

The Product Rule

Let b, M and N be positive real numbers with $\mathrm{b} \neq 1$.

$$
\log _{b} M N=\log _{b} M+\log _{b} N
$$

The logarithm of a product is the sum of the logarithms of the factors.
Example 1: Use the product rule to expand each logarithmic expression. Assume all variables and variable expressions represent positive numbers.
a. $\log _{4}(7 x)=\log _{4}(7)+\log _{4}(x)$
b. $\log _{4}(7 x(x-2))=\log _{4}(7)+\log _{4}(x)+\log _{4}(x-2)$
c. $\log (10 x)=\log (10)+\log (x)=1+\log (x)$

The Quotient Rule

Let b, M and N be positive real numbers with $\mathrm{b} \neq 1$.

$$
\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N
$$

The logarithm of a quotient is the difference of the logarithms.
Example 2: Use the quotient rule to expand each logarithmic
 expression. Assume all variables and variable expressions represent positive numbers.
a.. $\log _{2} \frac{8}{x}=\log _{2}(8)-\log _{2}(x)=\log _{2}\left(2^{3}\right)-\log _{2}(x)=3-\log _{2}(x)$
b. $\log \frac{10^{2}}{5}=\log \left(10^{2}\right)-\log (5)=2-\log (5)$
c. $\ln \frac{8.7}{e^{5}}=\ln (8.7)-\ln \left(e^{5}\right)=\ln (8.7)-5$

The Power Rule

Let b and M be positive real numbers with $b \neq 1$, and let p be any real number.

$$
\log _{b} M^{p}=p \log _{b} M
$$

The logarithm of a number with an exponent is the product of the exponent and the logarithm of that number.

Example 3: Use the power rule to expand each logarithmic expression. Assume all variables and variable expressions represent positive numbers.
a. $\log _{3} x^{6}=6 \cdot \log _{3}(x)=6 \log _{3}(x)$
b. $\log _{2}(7 x)^{4}=4 x \log _{2}(7 x)=4 \log _{2}(7 x)$
c. $\log _{6} \sqrt{x}=\log _{6}\left(x^{\frac{1}{2}}\right)=\frac{1}{2} \cdot \log _{6}(x)=\frac{1}{2} \log _{6}(x)$

Expanding Logarithmic Expressions

Summary of Properties for Expanding Logarithmic Expressions

1. $\log _{b} M N=\log _{b} M+\log _{b} N \quad$ Product Rule
2. $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N$

Quotient Rule
3. $\log _{\mathrm{b}} \mathrm{M}^{p}=\operatorname{plog}_{\mathrm{b}} \mathrm{M} \quad$ Power Rule

Expanding logarithmic expressions may require that you use more than one property.

Example 4: Use logarithmic properties to expand each expression as much as possible. Assume all variables and variable expressions represent positive numbers.

$$
\text { a. } \begin{aligned}
\log _{2}\left(2 x^{2}\right) & =\log _{2}(2)+\log _{2}\left(x^{2}\right) \\
& =1+2 \cdot \log _{2}(x) \\
& =1+2 \log _{2}(x)
\end{aligned}
$$

b. $\log \frac{10^{1.5}}{\sqrt{x}}=\log \left(10^{1.5}\right)-\log (\sqrt{x}) \quad>=1.5-\frac{1}{2} \log (x)$
c. $\log _{b} x^{4} \sqrt[3]{y}=\log _{b}\left(x^{4}\right)+\log _{b}(\sqrt[3]{y}) \quad 2=4 \log _{b}(x)+\frac{1}{3} \log _{b}(y)$

$$
=4 \cdot \log _{b}(x)+\log _{b}\left(y^{\frac{1}{3}}\right)
$$

$$
=4 \log _{b}(x)+\frac{1}{3} \cdot \log _{b}(y)
$$

d. $\log _{4} \frac{\sqrt{x}}{25 y^{3}}=\log _{4}(\sqrt{x})-\log _{4}\left(25 y^{3}\right)$

$$
\begin{aligned}
\frac{v x}{25 y^{3}} & =\log _{4}(\sqrt{x})-\log _{4}\left(25 y^{3}\right) \\
& \left.=\frac{1}{2} \cdot \log _{4}\left(x^{1 / 2}\right)-[x)-\log _{4}(25)-3 \log _{4}(25)+\log _{4}\left(y^{3}\right)\right]
\end{aligned}
$$

Condensing Logarithmic Expressions

To condense a logarithmic expression, we write a sum or difference of two logarithmic expressions as a single logarithmic expression.
Use the properties of logarithms to do so.
Restatement of Properties of Logarithms:

1. $\log _{b} M+\log _{b} N=\log _{b} M N$

Product Rule
2. $\log _{b} M-\log _{b} N=\log _{b} \frac{M}{N}$
3. $\operatorname{plog}_{b} M=\log _{b} M^{p}$

Quotient Rule
Power Rule

Example 5: Write as a single logarithm. Assume all variables and variable expressions represent positive numbers.
a. $\log 25+\log 4=\log (25 \cdot 4)=\log (100)=\log \left(10^{2}\right)=2$
b. $\log 2 x+\log 4=\log (2 x \cdot 4)=\log (8 x)$
c. $\log (x-1)+\log (x+4)=\log [(x-1)(x+4)]$
d. $2 \log x-\log 4=\log \left(x^{2}\right)-\log (4)=\log \left(\frac{x^{2}}{4}\right)$
e. $7 \log _{4} 5 x-\log _{4} 8=\log _{4}\left[(5 x)^{7}\right]-\log _{4}(8)=\log _{4}\left[\frac{(5 x)^{7}}{8}\right]$
f. $\begin{aligned} \frac{1}{2} \log _{2} x+2 \log _{2} 5 y^{2} & =\log _{2}\left(x^{1 / 2}\right)+\log _{2}\left[\left(5 y^{2}\right)^{2}\right] \\ & =\log _{2}(\sqrt{x})+\log _{2}\left(5^{2} y^{4}\right) \\ & =\log _{2}(\sqrt{x})+\log _{2}\left(25 y^{4}\right)=\log _{2}\left(25 y^{4} \sqrt{x}\right)\end{aligned}$

The Change-of-Base Property

For any logarithmic bases a and b, and any positive number M,

$$
\log _{b} M=\frac{\log _{a} M}{\log _{a} b}
$$

The logarithm of M with base b is equal to the logarithm of M with any new base divided by the logarithm of b with that new base.
Since calculators generally have keys for only common or natural logs, the change of base formula must be used to evaluate logarithms with bases other than 10 or e.
If the new base, a, is chosen to be 10 or e, the change-of-base formula becomes:

$$
\log _{b} M=\frac{\log M}{\log b} \quad \text { or } \quad \log _{b} M=\frac{\ln M}{\ln b}
$$

Example 6: Evaluate each logarithm. Round your answer to the nearest hundredth.
a. $\begin{aligned} \log _{2} 133=\frac{\log (133)}{\log (2)} \approx 7.05528 \ldots \\ \approx 7.06\end{aligned}$
b. $\log _{0.5} 23.5=\frac{\ln (23.5)}{\ln (0.5)} \approx-4.55458 \ldots$
c. $\log _{6} 458=\frac{\ln (458)}{\ln (6)} \approx 3.41947$.

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

$$
\begin{aligned}
& f(x)=\log _{2}(x-1) \\
& f(x)=\frac{\ln (x-1)}{\ln (2)}
\end{aligned}
$$

Domain of $f(x)=\log \left(x^{2}\right)$
solve:

$$
\begin{aligned}
& x^{2}>0 \\
& x^{2}=0
\end{aligned}
$$

Example 7: Use the change-of-base formula and your graphing $\begin{gathered}\hat{E} x \text { duded }(-1)^{2}>0\end{gathered}$ calculator to graph $f(x)=\log _{2}(x-1)$. Indicate any vertical asymptotes with a dotted line.

Example 8: Use your graphing calculator to graph $f(x)=2 \log x$ and $f(x)=\log x^{2}$. Show the graphs on the grid below Explain why the

> Dansin of
> $f(x)=2 \log (x)$

Solve: $x>0$
graphs are different. Dom yin of $f(x)=\log \left(x^{2}\right)$ is $(-\infty, 0) \cup(0, \infty)$.

Domsin of $f(x)=2 \log (x)$ is $(0, \infty)$.

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

Answers Section 12.3

Example 1:

a. $\log _{4} 7+\log _{4} x$
b. $\log _{4} 7+\log _{4} x+\log _{4}(x-2)$
c. $1+\log x$

Example 2:

a. $3-\log _{2} x$
b. $2-\log 5$
c. In 8.7-5

Example 3:

a. $6 \log _{3} x$
b. $4 \log _{2}(7 x)$
c. $\frac{1}{2} \log _{6} x$

Example 4:

a. $1+2 \log _{2} x$
b. $1.5-\frac{1}{2} \log x$
c. $4 \log _{b} x+\frac{1}{3} \log _{b} y$
d. $\frac{1}{2} \log _{4} x-\log _{4} 25-3 \log _{4} y$

Example 5:

a. 2
b. $\log (8 x)$
c. $\log [(x-1)(x+4)]$
d. $\log \left(\frac{x^{2}}{4}\right)$
e. $\log _{4}\left(\frac{(5 x)^{7}}{8}\right)$
f. $\log _{2}\left(25 y^{4} \sqrt{x}\right)$

Example 6:

a. 7.06
b. -4.55
c. 3.42

Example 7:

Example 8:

The domain of $f(x)=\log _{2} x^{2}$ is the set of all real numbers except 0 but the domain of $f(x)=2 \log _{2} x$ is the $\{x / x>0\}$. $f(x)=\log _{2} x^{2}$

$$
f(x)=2 \log _{2} x
$$

12.4 Exponential and Logarithmic Equations

Exponential Equations

An exponential equation is an equation containing a variable in an exponent. We solve exponential equations in by one of the following methods:
Method 1: Express both sides of the equation as a power of the same base.

1. Rewrite each side as a power of the same base.
2. Equate the exponents. (If $b^{M}=b^{N}$, then $M=N$. Note: $b>0$.)
3. Solve the resulting equation.

Method 2: Take the natural logarithm of both sides of the equation.

1. Isolate the exponential expression.
2. Take the natural logarithm on both sides of the equation.
3. Simplify using one of the following properties:
$\operatorname{lnb}^{x}=x \ln b$ or $\ln e^{x}=x$
4. Solve for the variable.

Example 1: Solve each exponential equation. Give exact answers.

The solutionset is $\left\{\frac{5}{2}\right\}$.

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

$$
\begin{gathered}
\text { c. } 4^{4 x-1}=8 \\
\left(2^{24 x-1)}=2^{3}\right. \\
2^{8 x-2}=2^{3} \\
8 x-2=3 \\
2+8 x-2=2+3 \\
8 x=5 \\
\frac{8 x}{8}=\frac{5}{8} \\
x=\frac{5}{8}
\end{gathered}
$$

cheek:

$$
\left\lvert\, \begin{gathered}
4^{4\left(\frac{5}{8}\right)-1}=8 \\
4^{\frac{5}{2}-1}=8 \\
4^{\frac{5}{2}-\frac{2}{2}}=8 \\
4^{\frac{3}{2}}=8 \\
(\sqrt[2]{4})^{3}=8 \\
(2)^{3}=8 \\
8=8 \\
\text { TRUE! }
\end{gathered}\right.
$$

The solution S. et is $\{5$.

The solution

Example 2: Solve each exponential equation. Give an exact answer, and then use your calculator to approximate your answer to two decimal places.
a. $10^{x}=14$
b. $4 e^{x}=17$

$$
\begin{aligned}
& \frac{4 e^{x}}{4}=\frac{17}{4} \quad x^{\approx} 1.44691898 \ldots . \\
& e^{x}=\frac{17}{4} \\
& \ln \left(e^{x}\right)=\ln \left(\frac{17}{4}\right) \\
& x=\ln \left(\frac{17}{4}\right)_{\substack{\text { Exact Result }}}^{\begin{array}{c}
17.705 \approx 17 \\
\text { Close }
\end{array}} \\
& \text { Solution set } \\
& \text { is }\{1.45\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { c. } 15^{2+3 x}=122 \\
& \ln \left(15^{2+3 x}\right)=\ln (122) \\
& (2+3 x) \cdot \ln (15)=\ln 122) \\
& \frac{(2+3 x) \cdot \ln (15)}{\ln (15)}=\frac{\ln (122)}{\ln (15)} \\
& 2+3 x=\frac{\ln (122)}{\ln (15)} \\
& -2+2+3 x=\frac{\ln (122)}{\ln (15)}-2 \\
& \frac{1}{3} \cdot \frac{3 x}{1}=\left[\frac{\ln (122)}{\ln (15)}-2\right] \cdot \frac{1}{3} \\
& x=\frac{\ln (122)}{3 \ln (15)}-\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{1}{3} \cdot\left[\frac{\ln (122)}{\ln (15)}-2\right] \\
& x \approx \frac{1}{3} \cdot[1,77398-2] \\
& x \approx \frac{1}{3} \cdot[-0.22602] \\
& x \approx-0.07534 \\
& x \approx-0.08
\end{aligned}
$$

chuck

$$
15^{2+36-0.08)} \approx 122
$$

$$
15^{2-0.24} \approx 122
$$

$$
15^{1.76} \approx 122
$$

$$
117.468 \approx 122
$$

close?

Exact Result, $\longrightarrow\left\{\frac{\ln (122)}{3 \ln (15)}-\frac{2}{3}\right\}$

Logarithmic Equations

A logarithmic equation is an equation that contains a variable in a logarithmic expression. To solve a logarithmic equation:

1. Collect all of the terms involving logarithms on one side of the equation. Rewrite that logarithmic expression as a single logarithm using the properties of logarithms.
2. Rewrite the equation in its equivalent exponential form.
3. Solve the resulting equation.
4. Check proposed solutions and exclude any that produce the logarithm of a negative number or the logarithm of 0 .

Example 3: Solve the given logarithmic equations. Give exact answers.
a. $\log _{2} x=-4$

$$
\begin{aligned}
& 2^{-4}=x \\
& \frac{1}{2^{4}}=x \\
& \frac{1}{16}=x
\end{aligned}
$$

$$
\left.\left|\begin{array}{c}
\log _{2}\left(\frac{1}{16}\right)=-4 \\
\log _{2}\left(\frac{1}{2^{4}}\right) \\
\log _{2}\left(2^{-4}\right)=-4 \\
-4=-4 \\
\text { TRUE! }
\end{array}\right| \text { The solution set is } 2 \frac{1}{16}\right\} \text {. }
$$

$$
\begin{aligned}
& \text { b. } \log _{4}(x+5)=3 \\
& 4^{3}=x+5 \\
& \log _{4}[(59)+5]=3 \\
& \hline \text { check. } \\
& \hline \text { The solution set is }\{59\} .
\end{aligned}
$$

$$
\begin{gathered}
\text { c. } \log _{6}(x+5)+\log _{6} x=2 \\
\log _{6}[(x+5) \cdot x]=2 \\
\log _{6}\left(x^{2}+5 x\right)=2 \\
6^{2}=x^{2}+5 x \\
36=x^{2}+5 x \\
-36+36=-36+x^{2}+5 x \\
0=x^{2}+5 x-36 \\
0=\left(x+9 x(x-4) \quad \begin{array}{l}
\frac{36}{1,36} \\
2,18 \\
3,12 \\
4,9 \\
6,6 \\
\hline
\end{array}\right. \\
x+9=0, \text { or } x-4=0 \\
-9+x+9=-9+0 \\
x=-9
\end{gathered}
$$

The solution set

$$
\text { is }\{4\} \text {. }
$$

Check:

$$
\begin{aligned}
& \log _{6}[(-9)+5]+\log _{6}(-9)=2 \\
& \log _{6}(-4)+\log _{6}(-9)=2
\end{aligned}
$$

Not Allowed to use negative numbers in logs - Not In Domain

Wheels:

$$
\begin{gathered}
\log _{6}[(4)+5]+\log _{6}(4)=2 \\
\log _{6}(9)+\log _{6}(4)=2 \\
\log _{6}(9 \cdot 4)=2 \\
\log _{6}(3)=2 \\
\left.\log _{6} 6^{2}\right)=2 \\
2=2 \\
\text { TRUE! }
\end{gathered}
$$

Applications
Example 4: Use the formula $R=6 e^{12.77 x}$, where x is the blood alcohol concentration and R, given as a percent, is the risk of having a car accident to find the blood alcohol concentration that corresponds to a 50% risk of having a car accident.
A 50% risk of haring a cor accident weans that $R=50$, since R is given a percent. Find x when $R=50$.

$$
\begin{aligned}
& 50=6 e^{12.77 x} \\
& \frac{50}{6}=\frac{6 e^{12.77 x}}{6} \\
& \frac{25.2}{3.2}=e^{12.77 x} \\
& \frac{25}{3}=e^{12.77 x} \\
& \ln \left(\frac{25}{3}\right)=\ln \left[e^{12.77 x}\right] \\
& \ln \left(\frac{25}{3}\right)=12.77 x \\
& \frac{\ln \left(\frac{25}{3}\right)}{12.77}=\frac{12.77 x}{12.77} \\
& \frac{\ln \left(\frac{25}{3}\right)}{12.77}=x \\
& \frac{2.12026}{12.77} x x \\
& 0.166 x x \\
& 0.17 x x
\end{aligned}
$$

$$
\begin{array}{|l}
\text { check } \\
50 \approx 6 e^{12.77 \cdot(0.17)} \\
50 \approx 6 e^{2.1709} \\
50 \approx 6 \cdot(8.76617) \\
50 \approx 52.6 \\
\text { close }
\end{array}
$$

A blood alcohol concentration of 0.17 covesponds to
a 50% risk of having a er accident.

Example 5: If A is the accumulated value of an investment P after t years at r, the annual interest rate in decimal form and n, the number of compounding periods per year, then

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Find the accumulated value of an account in which $\$ 10,000$ was invested for 10 years at 5% interest, compounded daily (360 times per year). $\quad P=\$ 10,000, t=10$ years, $r=5 \%=0.05, n=360$

$$
\begin{aligned}
& A=(10,000)\left[1+\frac{10.05)}{(360)}\right]^{[(360)(10)]} \\
& A \approx 10,000[1+0.00013888888899]^{3600} \\
& A \approx \$ 10000[1.0001388888889]^{3600} \\
& A \approx \$ 10,000 \cdot(1.64866403039) \\
& A \approx \$ 16,486.64
\end{aligned}
$$

The accumulated value of this account should be \$16, 486.64.

Example 6: If A is the accumulated value of an investment P after t years at r, the annual interest rate in decimal form and with continuous compounding, then

$$
\mathrm{A}=\mathrm{Pe}^{\mathrm{t}}
$$

Find the accumulated value of $\$ 10,000$ invested at 5% interest, compounded continuously for 10 years.

$$
\begin{aligned}
& \text { pounded continuously for } 10 \text { years. } \\
& \qquad P=\$ 10,000, \quad r=5 \%=0.05, t=10 \text { yedrs } \\
& A=(\$ 10,000) e^{[(0.05)(10)]} \\
& A=\$ 10,000 e^{0.5} \\
& A=\$ 10,000 \cdot(1.6487212707) \\
& A \\
&
\end{aligned}
$$

The accumulated value of this account should be $\$ 16,487,21$

Answers Section 12.4

Example 1:

a. $\left\{\frac{3}{4}\right\}$
b. $\left\{\frac{5}{2}\right\}$
c. $\left\{\frac{5}{8}\right\}$
d. $\left\{-\frac{3}{4}\right\}$

Example 2:

a. $\{1.15\}$
b. $\{1.45\}$
c. $\{-0.08\}$

Example 3:

a. $\left\{\frac{1}{16}\right\}$
b. $\{59\}$
c. $\{4\}$

Example 4: 0.17, A blood alcohol content of 17 corresponds to a 50% risk of having a car accident.

Example 5: The accumulated value of an account in which $\$ 10,000$ was invested for 10 years at 5% interest, compounded daily is \$16,486.64.

Example 6 The accumulated value of \$10,000 invested at 5\% interest, compounded continuously for 10 years is $\$ 16,487.21$.

[^1]
12.5 Exponential Growth and Decay; Modeling Data

Exponential Growth and Decay Models

The mathematical model for exponential growth or decay is given by $f(t)=A_{0} e^{k t}$, or $A=A_{0} e^{k t}$.

- If $k>0$ the function models the amount, or size, of a growing entity. A_{0} is the original amount, or size, of the growing entity at time $t=0, A$ is the amount at time t and k is a constant representing the growth rate.
- If $k<0$ the function models the amount, or size, of a decaying entity. A_{0} is the original amount, or size, of the decaying entity at time $t=0, A$ is the amount at time t and k is a constant representing the decay rate.

(a) Exponential growth

(b) Exponential decay

Sometimes we need to use given data to determine k, the rate of growth or decay. After we compute the value of k, we can use the formula $A=A_{0} e^{k t}$, to make predictions.

Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

$$
\begin{aligned}
& 1.48 \approx e^{37 k} \\
& \log _{e}(1.48) \approx 37 k \\
& \ln (1.48) \approx 37 k
\end{aligned}
$$

Example 1: The graph below shows the U.S.population, in millions, for five selected years from 1970 through 2007. In 1970, the U.S. population was 203.3 million. By 2007, it had grown to 300.9 million.
U.S. Population, 1970-2007

a. Find an exponential growth function that models the data for 1970 through 2007.
b. By which year will the U.S. population reach 315 million?

Solve for k : ${ }^{1970}{ }^{1980} \quad$ Year 19002000 Solve for t :

$$
\begin{aligned}
& \frac{A=A_{0} e^{k t}}{300.9}=203.3 e^{k(37)} \\
& \frac{300.9}{203.3}=\frac{203.3 e^{k(37)}}{203.3}
\end{aligned}
$$

$$
\forall \rightarrow 1.48 \approx e^{37 k}
$$

$$
\ln (1.48) \approx \ln \left(e^{37 k}\right)
$$

$0.3921 \approx 37 k$
$\frac{0.3921}{37} \approx \frac{37 K}{37}$
$0.0106 \approx K$
$1.06 \% \sim K$

$$
f(t)=203.3 e^{0}
$$

(b)

$$
\text { b) } \begin{aligned}
& f(t)=315 \text { million } \\
& 315=203.3 e^{0.0106 t} \\
& \frac{315}{203.3}=\frac{203.3 e^{0.0106 t}}{203.3} \\
& 1.5494 \approx e^{0.0106 t} \\
& \ln (1.5494) \approx \ln \left(e^{0.0106 t}\right)
\end{aligned}
$$

$$
0.4379 \approx 0.0106 t
$$

$$
\frac{0.4379}{0.0106} \approx \frac{0.0106 t}{0.0106}
$$

$41.3 \approx t$
Sine $t=0$ in 1970, we find that 41.3 corresponds to 2,011 . In 2010 , we expect the as. population to be around 315 million.

Example 2: In 1990, the population of Africa was 643 million and by 2006 it had grown to 906 million. $t=16$ in 2006 $A(16)=906$ million, t
a. Use the exponential growth model $A=A_{0} e^{k t}$, in which is the number of years after 1990, to find the exponential growth function that models the data.

$$
\begin{aligned}
& t=0 \text { in } 1990 \\
& A_{0}=643 \text { million. }
\end{aligned}
$$

b. By which year will Africa's population reach 2000 million, or two

$$
\begin{gathered}
\text { (a) } \begin{array}{l}
\text { billion? } \\
\text { Solve } \\
\text { for } \\
\text { for } \\
\longrightarrow
\end{array} 906=643 e^{k(16)} \\
\frac{906}{643}=\frac{643 e^{16 k}}{643} \\
1.409 \approx e^{16 k} \\
\ln (1.409) \approx \ln \left(e^{16 k}\right) \\
\ln (1.409) \approx 16 k \\
0.3429 \approx 16 k \\
\frac{0.3429}{16} \approx \frac{16 k}{16} \\
0.0214 \approx k \\
2.14 \% \approx k
\end{gathered}
$$

Growth constant

$$
A=A_{0} e^{0.0214 t}
$$

(b) $2000=643 e^{0.0214 t}$

$$
\frac{2000}{643}=\frac{643 e^{0.0214 t}}{643}
$$

$$
3.1104 \approx e^{0.0214 t}
$$

$\ln (3.1104) \approx \ln \left(e^{0.0214 t}\right)$
$\ln (3.104) \approx 0.0214 t$
$1.1348 \approx 0.0214 t$
$\frac{1.1348}{0.0214} \approx \frac{0.0214 t}{0.0214}$
$53.03 \approx t$
In 2,043, Africa should hove appulation of 2 billion.

Our next example involves exponential decay and its use in determining the age of fossils and artifacts. The method is based on considering the percentage of carbon-14remaining in the fossil or artifact. Carbon-14 decays exponentially with a half-life of approximately 5715 years. The half-life of a substance is the time required for half of a given sample to disintegrate. Thus, after 5715 years a given amount of carbon-14 will have decayed to half the original amount. Carbon dating is useful for artifacts or fossils up to 80,000 years old. Older objects do not have enough carbon-14 left to determine age accurately.

Example 3: a. Use the fact that after 5715 years a given amount of carbon-14 will have decayed to half the original amount to find the exponential decay model for carbon-14. $A=\frac{A_{0}}{2}$
b. In 1947, earthenware jars containing what are known as the Dead Sea Scrolls were found by an Arab Bedouin herdsman. Analysis indicated that the scroll wrappings contained 76% of their original carbon-14. Estimate the age of the Dead Sea Scrolls. $A=0.76 A_{0}$
Solve for k :
(a)

$$
\begin{aligned}
& e \text { for k: } A=A_{0} e^{k t} \\
& \frac{A_{0}}{2}=A_{0} e^{k(5,715)} \\
& \frac{1}{A_{0}} \cdot \frac{A_{0}}{2}=\frac{1}{A_{0}} \cdot \frac{A_{0} e^{k(5,715)}}{1} \\
& \frac{1}{2}=e^{5,715 k} \\
& \ln \left(\frac{1}{2}\right)=\ln \left(e^{5,715 k}\right) \\
& \ln \left(\frac{1}{2}\right)=5,715 k \\
& \ln \left(\frac{1}{2}\right)=\frac{5,715 k}{5,715} \\
& \frac{\ln \left(\frac{1}{2}\right)}{5,715}=k \\
& \frac{-0,69315}{5,715} \approx K \\
&-0,0001213 \approx k \\
&-0,01213 \% \approx k \\
& f(t)=A_{0} e^{-0,0001213 t}
\end{aligned}
$$

Solve for t :

$$
\begin{gathered}
0.76 A_{0}=A_{0} e^{-0.0001213 t} \\
\frac{0.76 A_{0}}{A_{0}}=\frac{A_{0} e^{-0.0001213 t}}{A_{0}} \\
0.76=e^{-0.0001213 t} \\
\ln (0.76)=\ln \left(e^{-0.0001213 t}\right) \\
\ln (0.76)=-0,0001213 t \\
\frac{\ln (0,76)}{-0.0001213}=\frac{-0.0001213 t}{-0.0001213} \\
\frac{\ln (0.76)}{-0.0001213}=t \\
\frac{-0.27444}{-0.0001213} \approx t \\
2,262.46 \approx t \\
\text { The Dead Sea Scrolls should } \\
\text { about } 2,262 \text { years old. }
\end{gathered}
$$

Example 4: Strontium-90 is a waste product from nuclear reactors. As a consequence of fallout from atmospheric nuclear tests, we all have a measurable amount of strontium-90 in our bones.

$$
t=20
$$

a. Use the fact that after 28 years a given amount of strontium- 90 will have decayed to half the original amount to find the exponential decay model for strontium-90. $A_{0}=$ original amount of strontian -90
b. Suppose that a nuclear accident occurs and releases 60 grams of strontium-90 into the atmosphere. How long will it take for strontium90 to decay to a level of 10 grams.

$$
\frac{1}{6}=e
$$

$$
=-0.0248 t
$$

Decay
b. $A=A_{0} e^{-}$

$$
10=60 e^{-0.0248 t} \leftarrow \text { Solve for } t_{i}
$$

$$
\frac{10}{60}=\frac{60 e^{-0.0248 t}}{60}
$$

$$
\begin{aligned}
\frac{1}{6} & =e \\
\ln \left(\frac{1}{6}\right) & =\ln \left(e^{-0.0248 t}\right)
\end{aligned}
$$

$$
\ln \left(\frac{1}{6}\right)=-0.0248 t
$$

$-1.7918 \approx-0.0248 t$ $\frac{-1.7918}{-0.0248} x \frac{-0.0248 t}{-0.0248}$
$72.25 \approx t$
After 72.25 years, 60 grams of Srroatiom -90 will decay to 10 grams.

$$
\begin{aligned}
& \operatorname{col}_{\substack{\text { Solve } \\
\text { for } \\
k \rightarrow}} \frac{1}{2} A_{0}=A_{0} e^{k t} \\
& \frac{\frac{1}{2} A_{0}}{A_{0}}=\frac{A_{0} e^{28 k}}{A_{0}} \\
& \frac{1}{2}=e^{28 k} \\
& \ln \left(\frac{1}{2}\right)=\ln \left(e^{28 k}\right) \\
& \ln \left(\frac{1}{2}\right)=28 \mathrm{~K} \\
& -0.6931 \approx 28 k \\
& \frac{-0.6931}{28} \times \frac{281}{28} \\
& -0.0248 \approx K \\
& -2.48 \% \text { pK }
\end{aligned}
$$

13.1 The Circle and Its Graph MATH 64

Recall all Graphing we have covered:
a) Linear Equations $a x+b y=c$
b) Quadratic Equations $a x^{2}+b x+c=0$
c) Exponential Equations $y=b^{x}$
d) Logarithmic Equations $y=\log _{b}(x)$

Pre-Requisite Knowledge:

1. You need to recall how to complete the square

$$
\begin{aligned}
& {\left[\frac{1}{2}(6)\right]^{2}} \\
& =(3)^{2} \\
& =9
\end{aligned}\left\{\begin{array}{l}
x^{2}+6 x \\
x^{2}+6 x+9=(x+3)^{2}
\end{array}\right.
$$

2. You need to recall how to find the distance between two points in the coordinate plane.

The Distance Formula is a formula used for computing the distance " d " between two points in a coordinate plane. If one point A is designated with coordinates $\left(x_{1}, y_{1}\right)$ and the second point B is $\left(x_{2}, y_{2}\right)$, then

$$
\text { distance " } d \text { " }=A B=\sqrt{\left(X_{2}-X_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Always leave in simplified radical form - no decimals.

Ex. 1 Find the distance between the point $(-4,-3)$ and $(2,5)$.

$d=\sqrt{[2)-(-4)]^{2}+[(5)-(-3)]^{2}}$ SOuk
$d=\sqrt{(2+4)^{2}+(5+3)^{2}}$
$d=\sqrt{(0)^{2}+(8)^{2}}$

Ex. 2 Find the distance between the point $(3,-8)$ and $(-4,6)$.

Definition: A circle is the set of all points in a plane that are equidistant from a fixed point, called the center. The fixed distance from the circle's center to any point on the circle is called the radius A compass is usually used to draw a circle (or an \qquad

To find the Equation of a Circle
Step 1. Draw a circle in the rectangular coordinate system below.
Step 2. Label the center of the circle (h, k).
Step 3. Let (x, y) represent the coordinates of any point on the circle.

Step 4. What does the geometric definition (above) tell us about a point (x, y) on the circle?
\qquad
Step 5. Use the distance formula to express the idea from step 4 algebraically.

$$
\begin{array}{ll}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \left(x_{1} y_{1}\right)=(h, k) \\
r=\sqrt{(x-h)^{2}+(y-k)^{2}} & \left(x_{2}, y_{2}\right)=(x, y) \\
r^{2}=\left[\sqrt{\left.(x-h)^{2}+(y-k)^{2}\right]^{2}}\right. & r=d \\
r^{2}=(x-h)^{2}+(y-k)^{2} &
\end{array}
$$

The Standard Form of the Equation of a Circle with center (h, k) and radius r.

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

(1) Write the standard form of the equation of a circle with center $(0,0)$ and radius of 2. Graph the circle. $(h, k)=0,0)$

$$
(x-h)^{2}+(y-k)^{2}=r^{2} \quad \Gamma=2
$$

$$
[x-(0)]^{2}+[y-(0)]^{2}=(2)^{2}
$$

$$
x^{2}+y^{2}=4
$$

(3) Find the center and radius of the circle whose equation is $(x-2)^{2}+(y+4)^{2}=9$. Graph the circle. $\quad h=2, k=-4$
Center $(n, k)=(2 ; 4)$

$$
\begin{aligned}
& r^{2}=9 \\
& r=3
\end{aligned}
$$

(2) Write the standard form of the equation of a circle with center $(-2,3)$ and radius of 4. Graph the circle. $(h, k)=(-2,3)$
$(x-h)^{2}+(y-k)^{2}=r^{2}$ $r=4$
$[x-(-2)]^{2}+[y-(3)]^{2}=(4)^{2}$
$(x+2)^{2}+(y-3)^{2}=16$

(4) Find the center and radius of the circle whose equation is $x^{2}+(y-3)^{2}=8$.
Graph the circle. $\quad h=0, K=3$
(enter

$$
\begin{aligned}
& r^{2}=8 \\
& r=\sqrt{8} \\
& r=\sqrt{4} \cdot \sqrt{2} \\
& r=2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad(x-h)^{2}+(y-k)^{2}=r^{2} \\
& \text { (3) Write in standard form and graph: } x^{2}+y^{2}+4 x-6 y-23=0 . \\
& \left(x^{2}+4 x\right)+\left(y^{2}-6 y\right)-23+23=0+23 \\
& \left(x^{2}+4 x+4\right)+\left(y^{2}-6 y+9\right)=23+4+9 \\
& {\left[\frac{1}{2}(4)\right]^{2}=(2)^{2}=4 \quad\left[\frac{1}{2}(-6)\right)^{2}=(-3)^{2}=9} \\
& (x+2)^{2}+(y-3)^{2}=36 \\
& (h, k)=(-2,3) \\
& r^{2}=36 \\
& r=6
\end{aligned}
$$

$$
(-2,9)
$$

$$
\begin{aligned}
& \text { (write in standard form and graph: } x^{2}+y^{2}+12 x+32=0 . \\
& \left(x^{2}+12 x\right)+\left(y^{2}\right)+32-32=0-32 \\
& \left(x^{2}+12 x+36\right)+y^{2}=-32+36 \\
& {\left[\frac{1}{2}(12)\right]^{2}=(6)^{2}=36} \\
& (x+6)^{2}+y^{2}=4 \\
& (h, k)=(-6,0) \\
& r^{2}=4 \\
& r=2
\end{aligned}
$$

(7) Find the equation of the circle graphed below.

Your answer should be in standard form.

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& {[x-(-2)]^{2}+\left(y-(0)^{2}=(3)^{2}\right.} \\
& (x+2)^{2}+(y-1)^{2}=9
\end{aligned}
$$

$$
\begin{aligned}
& r=3 \\
& \text { diameter }=b=2 r \\
& \text { radius }=r \\
& \text { center }=(-2,1) \\
&=(h, k)
\end{aligned}
$$

(8) Graph the parabola: $y=x^{2}$ on the graph in problem (7). At what two points do the graphs intersect?
\qquad
Date \qquad

Recall SOME of the Equations we have covered:
a) Equations of Lines

$$
\begin{aligned}
& y=m x+b \\
& a x+b y=c
\end{aligned}
$$

b) Equations of Parabolas

$$
y=a x^{2}+b x+c
$$

c) Equations of Circles

$$
\left.(x-h)^{2}+4-k\right)^{2}=r^{2}
$$

There are many other non-linear equations, such as an ellipse, hyperbola, sine, cosine, logistic, limacons, to name a few. For those of you continuing on in Mathematics there is so much to look forward to!

To be a SOLUTION TO A SYSTEM OF LINEAR EQUATIONS \Leftrightarrow must work in BOTH!

Ex 1. Is $(-2,3)$ a solution to the system? Yes or No?

$$
\left\{\begin{array}{c}
x+2 y=4 \\
2 x+y=-1
\end{array}\right.
$$

check $(-2,3)$

$$
\begin{array}{r|c}
(-2)+2(3)=4 & 2(-2)+(3)=-1 \\
-2+6=4 & -4+3=-1 \\
4=4 & -1=-1 \\
T \text { PeE } & \text { TRUE }
\end{array}
$$

Ex. 2. Is $(-1,7)$ a solution to the system? Yes provo

$$
\left\{\begin{array}{l}
3 x+2 y=11 \\
x+5 y=36
\end{array}\right.
$$

chect:1, $(-1,7)$

$$
\begin{gathered}
3(-1)+2(7)=11 \\
-3+14=11 \\
11=11
\end{gathered}
$$

TRUE

$$
\begin{gathered}
(-1)+5(7)=36 \\
-1+35=36 \\
34=36 \\
\text { Fadge }
\end{gathered}
$$

PREREQUISITE KNOWLEDGE:

Revisiting: Ex 1. Graph and find the solution to :

The solution ret is $\{(-2,3)\}$.

$$
\begin{array}{c|c}
(-2)+2(3)=4 & 2(-2)+(3)=-1 \\
-2+6=4 & -4+3=-1 \\
4=4 & -1=-1 \\
\text { TRUE! } & \text { TRUE! }
\end{array}
$$

SOLVING A SYSTEM OF EQUATIONS
USING ELIMINATION AND SUBSTITUTION
SINCE GRAPHING A SYSTEM ONLY SHOWS LOCATION, CAN WE JUST SKIP THE GRAPHING AND USE ALGEBRA TO FIND THE POINT (if there is one) OF INTERSECTION?

THREE 1. You want EACH equation to be in standard form.
EASY 2. You want to eliminate either the x or the y term or SUB STEPS
3. Solve and then find the point you need (substitute. . AND CHECK)

Revisiting: Ex 1. $\left.\quad \begin{array}{rl}\quad x+2 y=4 & \rightarrow-2 \cdot(x+2 y)=-2.4 ;-2 x-4 y\end{array}\right)=8$

$$
\begin{aligned}
-2 \cdot(2 x+y) & =-2 \cdot(-1) \\
-4 x-2 y & =2 \\
x+2 y & =4 \\
-3 x & =6 \\
\frac{-3 x}{-3} & =6 \\
x & =-2
\end{aligned}
$$

$$
2 x+y=-1
$$

cheek: $(-2,3)$
$(-2)+2(3)=4$ $-2+6=4$ $4=4$, ru !

$$
\begin{gathered}
2(-2)+(3)=-1 \\
-4+3=-1
\end{gathered}
$$

$$
-1-1
$$

TRUE

-
The solution
$y=3$

$$
\left\{(-2,3)^{\prime}\right\} .
$$

A SOLUTION TO A SYSTEM OF NON-LINEAR EQUATIONS \Leftrightarrow must work in BOTH!
Recall this problem from our last set of notes
(7) Find the equation of the circle graphed below.

Your answer should be in standard form.
center $m(-2,1)=(a, k)$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
\begin{aligned}
& {\left[x-(-2)^{2}+(y-1)^{2}=(3)^{2}\right.} \\
& (x+2)^{2}+(y-1)^{2}-9
\end{aligned}
$$

(8) Graph the parabola: $y=x^{2}$ on the graph in problem (7). At what two points do the graphs intersect?

$$
(-2,4) \in(1,1)
$$

check: $(-2,4)$

$$
\begin{aligned}
& \frac{\text { check: }}{y=x^{2}} \\
& (-4)=(-2)^{2} \\
& 4=4 \\
& \text { TRUE! } \\
& \frac{\text { cheek! }(1,1))}{\begin{array}{l}
(1)=(1)^{2} \\
1=1 \\
\text { TRUE }
\end{array}} \begin{array}{l}
\text { The solution set }
\end{array} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& (x+2)^{2}+(y-1)^{2}=9 \\
&
\end{aligned}
$$

13.5 Systems of Non-Linear Equations

A system of two non-linear equations in two variables, also called a nonlinear system, contains at least one equation that cannot be expressed as $\mathrm{A} x+\mathrm{B} y=\mathrm{C}$. We solve systems by using either elimination or substitution
Ex. $1\left\{\begin{array}{l}x^{2}=2 y+10 \\ 3 x-y=9\end{array} \quad\right.$ The solution et is $2(2,3),(4,3)$,
Use $3 x-y=9$ for substitution.

$$
\begin{gathered}
y+3 x-y=y+9 \\
9+3 x=y+9-9 \\
3 x-9=y \\
x^{2}=2 y+10 \\
x^{2}=2(3 x-9)+10 \\
x^{2}=6 x-18+10 \\
(-6 x+8)+x^{2}=6 x-8+(-6 x+8)\left[\frac{8}{18}\right] \\
x^{2}-6 x+8=0
\end{gathered}
$$

$$
(x-2)(x-4)=0
$$

Either
$x-2=0$, or $x-4=0$
Ex. $2 \frac{x=2 \text {, or } x=4}{\left\{\begin{array}{l}(x-2)^{2}+(y+3)^{2}=4 \\ x-y=3\end{array}\right.}$
use $x-y=3$ for substitution.

$$
\begin{gathered}
x-y+y=y+3 \\
x=y+3 \\
(x-2)^{2}+(y+3)^{2}=4 \\
{[(y+3)-2]^{2}+(y+3)^{2}=4} \\
(y+1)^{2}+(y+3)^{2}=4 \\
(y+1)(y+1)+(y+3)(y+3)=4 \\
y^{2}+2 y+1+y^{2}+6 y+9=4 \\
2 y^{2}+8 y+10=4 \\
2 y^{2}+8 y+10-4=4-4 \\
2 y^{2}+8 y+6=0 \\
\frac{1}{2}\left(2 y^{2}+8 y+6\right)=\frac{1}{2} \cdot 0 \\
y^{2}+4 y+3=0 \\
(y+3)(y+1)=0 \\
e i+h e 2 \\
y+3=0 \text {,or } y+1=6 \\
y=-3 \text {,or } y=-1
\end{gathered}
$$

Find $y!$	
$3 x-9=y$ $\frac{x-2}{3(2)}-9=y$ $6-9=y$ $-3=y$	$3 x-9=y$ $(2,-3)$
$12-9=y$	
$3=y$	
$(4,3)$	

cheek: $(2,-3)$

$$
\begin{aligned}
& (2)^{2}=2(-3)+10 \\
& 4=-6+10 \\
& 4=4 \text { rRUE! } \\
& (2)-(-3)=9 \\
& 6+3=9 \\
& 9=9, \text { nIUE! }
\end{aligned}
$$

Cheek: $(4,3)$

$$
\begin{gathered}
(4)^{2}=2(3)+10 \\
16=6+10 \\
16=16+2 U E! \\
3(4)-(3)=9 \\
12-3=9 \\
9=9, \text { TRUE! }
\end{gathered}
$$

check: $(0,-3)$

$$
\begin{gathered}
{[(0)-2]^{2}+[(-3)+3]^{2}=4} \\
(-2)^{2}+(0)^{2}=4 \\
4+0=4 \\
4=4, \text { TE NE! } \\
(0)-(-3)=3 \\
3=3, \text { TrUE! }
\end{gathered}
$$

cheeks: $(2,1)$

$$
\begin{gathered}
{[(2)-2]^{2}+[(-1)+3]^{2}=4} \\
(0)^{2}+(2)^{2}=4 \\
4=4 \\
(2)-(-1)=3 \\
2+1=3 \\
3=3,724=1
\end{gathered}
$$

Ex 3. How many possible solutions could there be for the intersection of a parabola and a circle?

Ex 4. How many possible solutions could there be for the intersection of a parabola and a line?

Ex 5. How many possible solutions could there be for the intersection of two parabolas?

Ex 6. Solve the following system of equations: use $y=-x^{2}-2 x+14$ for Substitution.

$$
\begin{gathered}
y=x^{2}-4 x-10 \\
-x^{2}-2 x+14=x^{2}-4 x-10 \\
=x^{2}=2 x+14+x^{2}+2 x-14=x^{2}-4 x-10+x^{2}+2 x-14 \\
0=2 x^{2}-2 x-24 \\
\frac{1}{2} \cdot 0=\frac{1}{2} \cdot\left(2 x^{2}-2 x-24\right) \\
0=x^{2}-x-12 \\
\left.0=(x-4)(x+3) \quad \begin{array}{l}
\frac{12}{1,2} \\
2,6 \\
3,4 \\
\end{array}\right]
\end{gathered}
$$

Either
$x-4=0$, or $x+3=0$
$x=4$, or $x=-3$
Find y :

$$
\begin{aligned}
& y=-x^{2}-2 x+14 \\
& x=4 \\
& y=-(4)^{2}-2(4)+14 \\
& y=-16-8+14 \\
& y=-24+14 \\
& y=-10 \quad(4,-10)
\end{aligned}
$$

check! $(4,-10)$.

$$
\begin{aligned}
y & =-x^{2}-1 x+14 \\
-10 & =-(4)^{2}-2(4)+14 \\
-10 & =-16-8+14 \\
-10 & =-24+14 \\
-10 & =-10, \text { TRUE! } \\
y & =x^{2}-4 x-10 \\
-10 & =(4)^{2}-4(4)-10 \\
-10 & =16-16-10 \\
-10 & =-10, \text { TRUE! }
\end{aligned}
$$

check! $(-3,11)$

$$
\begin{aligned}
& 11=-\left(\mathrm{c}^{2}\right)^{2}-2(-3)+14 \\
& 11=-9+6+14 \\
& 11=-3+14 \\
& 11=11 \quad \text { TRUE } \\
& 11=(-3)^{2}-4(-3)-10 \\
& 11=9+12-10 \\
& 11=21-10 \\
& 11=11, \text { TRUE }
\end{aligned}
$$

The solution set is

$$
\{(4,-10),(-3,1)\} \text {. }
$$

The solution set is
Solve using Elimination:

$$
\{(0,2),(0,-2),(-1, \sqrt{3}),(-1,-\sqrt{3})\}
$$

Ex 7. Solve the following system of equations: $\left\{\begin{array}{l}x^{2}+y^{2}=4 \\ y^{2}-x=4 \rightarrow-1 \cdot\left(y^{2}-x\right)=-1 \cdot 4\end{array}\right.$

$$
\begin{gathered}
x^{2}+y^{2}=4 \\
+\quad y^{2}-y^{2}+x=-4 \\
x(x+1)=0
\end{gathered}
$$

Either
$x=0$, or $x+1=0$

$$
x=-1
$$

Find:

$$
\begin{aligned}
& y^{2}-x=4 \\
& x=0 \\
& y^{2}-(0)=4 \\
& y^{2}=4 \\
& y=\sqrt{4}, \text { or } y=\sqrt{4} \\
& y=2, \text { or } y=-2 \\
& (0,2) \&(0-2)
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& y^{2}-x=4 \\
& x=-1 \\
& y^{2}-(-1)=4 \\
& y^{2}+1=4 \\
& y^{2}+1-1=4-1 \\
& y^{2}=3 \\
& y=\sqrt{3}, \text { or } y=-\sqrt{3}
\end{aligned}\right.
$$

$\left|\begin{array}{c}\text { checky }(0,2) \\ (0)^{2}+(2)^{2}=4 \\ 4=4, \text { raVE! }\end{array}\right|$

$$
\begin{gathered}
(2)^{2}-(0)=4 \\
4=4 / \pi^{2} 4=!
\end{gathered}
$$

Cher k: $(0,-2)$
$(0)^{2}+(-2)^{2}=4$
$4=4$, TRUE!

$$
\begin{aligned}
& (-2)^{2}-(0)=4 \\
& 4=4, \text { TRUE }
\end{aligned}
$$

chat: $(-1, \sqrt{3})$

$$
\begin{gathered}
(-1)^{2}+(\sqrt{3})^{2}=4 \\
1+3=4 \\
y=4 \\
\text { TRUE }
\end{gathered}
$$

check: $(-1,-\sqrt{3})$

$$
\begin{gathered}
(-1)^{2}+(-\sqrt{3})^{2}=4 \\
1+3=4 \\
4=4 \\
\text { TRUE }
\end{gathered}
$$

Ex 8. Solve the following system of equations: solve using Elimination:

$$
\begin{aligned}
+x^{2}+y & =4 \\
-2 x-y & =-1 \\
\hline x^{2}-2 x & =3
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x^{2}+y=4 \\
2 x+y=1
\end{array} \rightarrow-1 \cdot(2 x+y)=-1 \cdot 1\right.
$$

$$
x^{2}-2 x-3=3-3
$$

$$
x^{2}-2 x-3=0
$$

$$
(x-3)(x+1)=0
$$

Either

$$
x-3=0 \text {, or } x+1=0
$$

$$
x=3 \text {, or } x=-1
$$

Find y :

$$
\begin{array}{cc}
y=3 & 2 x+y=1 \\
2(3)+y=1 \\
6+y=1 \\
-6+6+y=-6+1 \\
y=-5 \\
(3-5)
\end{array}
$$

Check $(3,-5)$

$$
(3)^{2}+(-5)=4
$$

check; $(-1,3)$

$$
9-5=4
$$

$$
y=4 \text {, Te le! }
$$

$$
2(3)+(-5)=1
$$

$$
6-5=1
$$

$$
1=1 \text {, TRUE }
$$

$$
\begin{gathered}
(-1)^{2}+(3)=4 \\
1+3=4 \\
4=4, \text { TRUE! } \\
2(-1)+(3)=1 \\
-2+3=1 \\
t=1, \text { TRUE! }
\end{gathered}
$$

$$
2 x+y=1
$$

$$
x=-1
$$

$$
2(-1)+y=1
$$

$$
-2+y=1
$$

$$
\begin{gathered}
-2+y=1 \\
-2+y+2=1+2 \\
=3
\end{gathered}
$$

$$
y=3
$$

$$
(-1,3)
$$

The solution rect is

$$
\{(3,-5),(-1,3)\},
$$

Solve using Elimination:
Ex 9. Solve the following system of equations:

$$
\begin{gathered}
x^{2}+(y-2)^{2}=4 \\
-x^{2}+2 y=0 \\
\hline(y-2)^{2}+2 y=4 \\
(y-2)(y-2)+2 y=4 \\
y^{2}-4 y+4+2 y=4 \\
y^{2}-2 y+4=4 \\
y^{2}-2 y+4-4=4-4 \\
y^{2}-2 y=0 \\
y-(y-2)=0
\end{gathered}
$$

Either

$$
\begin{gathered}
y=0, \text { or } y-z=0 \\
y=2
\end{gathered}
$$

Find x :

$$
\begin{gathered}
x^{2}-2 y=0 \\
x^{2}-2(0)=0 \\
x^{2}=0 \\
x=0
\end{gathered}
$$

$(0,0)$

$$
\begin{gathered}
x^{2}-2 y=0 \\
y=2 \\
x^{2}-2(2)=0 \\
x^{2}-4=0 \\
x^{2}-4+4=0+4 \\
x^{2} \leq 4 \\
x=\sqrt{\text { Either }} \text {, or } x=-\sqrt{4} \\
x=2 \text {,or } x=-2 \\
(2,2) \&(-2,2)
\end{gathered}
$$

$$
\left.\begin{array}{c}
\text { check! }(0,0) \\
\hline(0)^{2}+[(0)-2]^{2}=4 \\
0+[-2]^{2}=4 \\
4=4, \text { TRUE! } \\
(0)^{2}-2(0)=0 \\
0-0=0 \\
0=0 \text {,TRUE! }
\end{array}\right] \begin{gathered}
\text { check! }(2,2) \\
(2)^{2}+[(2)-2]^{2}=4 \\
4+(0)^{2}=4 \\
4=4, \text { TRUE! } \\
(2)^{2}-2(2)=0 \\
4-4=0 \\
0=0 \text {, TRUE! }
\end{gathered}
$$

cheek $(-2,2)$

$$
\begin{gathered}
(-2)^{2}+[(2)-2]^{2}=4 \\
4+(0)^{2}=4 \\
4=4, \text { TRUE! } \\
(-2)^{2}-2(2)=0 \\
4-4=0 \\
0=0, \text { TRUE! }
\end{gathered}
$$

The solution set is $\{(0,0),(2,2),(-2,2)\}$,

[^0]: Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer.

[^1]: Note: Portions of this document are excerpted from the textbook Introductory and Intermediate Algebra for College Students by Robert Blitzer

